American Express - Arrival Probability Al Studio Final Presentation

Break Through Tech AI @ UCLA Dec 6, 2022

Our Team

Yitian Yan Computer Science @ USC

Jade Eng Computer Information Systems @ CPP

Saurabh Gupta Challenge Advisor

Jane Zou Statistics @ UCLA

Akram Alim Challenge Advisor

Presentation Agenda

1. **Project Overview:**

- a. Goals
- b. Business Impact
- c. Our Approach
- d. Resources

2. Data Preprocessing:

- a. EDA
- b. Feature Engineering

3. Model Selection and Evaluation:

- a. Insights
- b. Takeaways

4. Final Thoughts

- a. What We Learned
- b. Potential Next Steps

Al Studio Project Overview

Problem Statement

Our Goal

- 1. Efficient use of **GitHub** (structured development engineering practices), CI/CD
- 2. Efficient use of SciKit/libraries to learn and understand **model building**
- 3. Cover all phases of model building exercise
- 4. Learn to **think outside the box collaboratively** to come up with alternative solutions

Business Impact

- Determine the profile of customers who are predicted to be **high ROI**
- Maximize investment of ad campaign funds more effectively

Our Approach

Milestone	Completion Date
1. Team Building: get to know how to collaborate effectively	08/19
2. Business Understanding: build business sense for Al Studio project, align project expectations	09/04
3. Data Understanding and Preparation: preprocess raw data	10/09
4. Modeling and Evaluation: choose model candidates, feature selection and hyperparameter techniques	11/06
5. Iterate and Prepare Your Presentation: improve selected model, prepare final presentation to Challenge Advisor and company	12/04

Resources We Leveraged

- Biweekly meetings with our **Challenge Advisors** Saurabh and Akram, and our **TA**, Shruthi
- **eCornell Machine Learning Fundamentals** Labs and Assignments
- Documentation on scikit learn, pandas
 - <u>Binary classification</u>
 - Random Forest Classifier
 - Gradient Boosting Classifier
 - Logistic Regression
 - XGBoost Model

Data Preprocessing

Exploratory Data Analysis

Account Data

- Remove NULL/NA values, replace with **mode** of column
- Combine into one dataset
- Replace duplicates with **maximum account date**
- Group by account id

from functools import reduce

#define list of DataFrames
#Replace df4 with maximums
dfs = [df1, df2, df3, maximums, df5, df6, df7, df8, df9, updated_wp1, updated_wp2]

#merge all DataFrames into one

final_df = reduce(lambda left,right: pd.merge(left,right,on=['ac_id'],

how='left'), dfs).fillna('n/a')

final_df.head()

	ac_id	cycle_dt	payment_due_dt	new_account_indicator	member_since_in_months	spend_active	is_active_balance	has_credit_limit_reached
0	AC4592fa29- 384c-4d58- a74b- 2ac5780e884f	3/14/18	4/8/18	0	n/a	1	0	0
1	AC4fb74ef4- 3f46-4e6a- 9ae7- 657320b463bc	n/a	n/a	0	n/a	1	0	0
2	AC10e4b9f0- e76f-4da7- a0d3- 99988ef23f08	3/7/18	4/2/18	0	185.0	1	0	0
3	ACe990a57f- 8061-4303- 97f6- 83b6c580a5f1	n/a	n/a	0	324.0	1	0	0
4	ACcec24e2f- c5d0-49ac- ae7d- 8106e50646ce	3/28/18	4/23/18	0	19.0	1	0	0

Creating the Label

Dependent Dataset

- **Combine responses** for all 30 days of June 2018 campaign
- Test models on day 3, 10, 20, and 29
- Label **binary indicator** of whether a customer arrived on the website

df2													
	Unnamed: 0	ac_id	arr_ind_1	arr_ind_2	arr_ind_3	arr_ind_4	arr_ind_5	arr_ind_6	arr_ind_7	arr_ind_8	 arr_ind_21	arr_ind_22	arr_ind_23
0	0	AC4592fa29- 384c-4d58- a74b- 2ac5780e884f	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	 1.0	1.0	1.
1	1	AC4fb74ef4- 3f46-4e6a- 9ae7- 657320b463bc	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	 1.0	1.0	1.
2	2	AC10e4b9f0- e76f-4da7- a0d3- 99988ef23f08	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	 1.0	1.0	1.
3	3	ACe990a57f- 8061-4303- 97f6- 83b6c580a5f1	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	 1.0	1.0	1.
4	4	ACcec24e2f- c5d0-49ac- ae7d- 8106e50646ce	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	 1.0	1.0	1.
97840	899995	AC3bff3721- 35d8-4ef7- a5a5- 753be4f67d2d	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	 1.0	1.0	1.
897841	899996	AC7aa46ab7- e3db-4075- b04c- b092372cf1fb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 1.0	1.0	1.
397842	899997	AC5d08eaa6- a54d-4cb4- a0b7- b49e9e482e08	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	 1.0	1.0	1.
397843	899998	ACf80349b3- 0be2-4d3d- bf96- f1ee507b9c6f	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	 1.0	1.0	1.
397844	899999	AC2384f6f9- 8cd5-4247- aaa9- 78799e937e5e	0.0	0.0	1.0	1.0	1.0	1.0	0.0	0.0	 1.0	0.0	1.

filename = os.path.join(os.getcwd(), "DEPENDENT DATA.txt")

df2 = pd.read_table(filename)

df2

Feature Engineering

Web Records, Purchase Records

- Calculate **maximum and minimum differences** between purchase date and web visit date, proximity from payment due date
- Count number of times a customer visits and purchases within
 30, 60, 90, 120, and 180 days
 before dependent data
 time frame (June 2018)
- Combine dependent data dates with feature engineering dataset
- Randomly select 500,000 unique accounts

	ac_id	visited_page	diff_dates		Min Date Diff	Purchase 30_x	Purchase 60_x	Purchase 90_x	Purchase 120_x	Purchase 180_x	 arr_ind_21	arr_ind_22	arr_ind_23
0	ACe761e40e- 3259-4e4f- 93f9- 8f2f2ed34388	REWARDS	52 days	380 days	31 days	0.0	0.0	0.0	0.0	0.0	 1.0	1.0	1.0
1	AC612ca133- 52a6-456d- a978- e6ecfa9e87d6	PRICINGENGINE	155 days	386 days	91 days	0.0	0.0	0.0	0.0	0.0	 1.0	1.0	1.0
2	AC200056f5- 32de-4cbd- 927d- 278f3ee18282	PRICINGENGINE	257 days	336 days	5 days	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	1.0
3	AC200056f5- 32de-4cbd- 927d- 278f3ee18282	PRICINGENGINE	209 days	336 days	5 days	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	1.0
4	AC4c2519a1- 4934-47e6- 8c22- 2ccfa240b586	MYACCOUNT	246 days	379 days	7 days	0.0	0.0	1.0	1.0	1.0	 1.0	1.0	1.0
499994	ACdc6643c3- 55a3-4f1b- b07a- fd486c85fb2f	PRICINGENGINE	38 days	327 days	3 days	0.0	0.0	0.0	1.0	1.0	 1.0	1.0	1.0
499996	AC8d97243d- d43d-4f68- bf7f- 30d07c485a54	REWARDS	88 days	224 days	5 days	0.0	0.0	0.0	1.0	1.0	 1.0	1.0	1.0
499997	AC762d9492- ad39-4d14- 888a- 8ac279982d85	PRICINGENGINE	223 days	349 days	47 days	1.0	1.0	1.0	1.0	1.0	 1.0	1.0	1.0
499998	AC043ad7c3- 807f-4f92- 9c31- 3161b69e1994	REWARDS	335 days	376 days	27 days	1.0	1.0	1.0	1.0	1.0	 1.0	1.0	1.0
499999	AC38c6c972- 5a5f-4a0f- bf9e- bad4c3c06025	REWARDS	247 days	295 days	8 days	0.0	1.0	1.0	1.0	1.0	 1.0	1.0	1.0

498668 rows × 66 columns

Model Selection and Evaluation

Random Forest

- Best Random Forest models:
 day 3 and day 29
- Calculate weighted **precision and recall**

Accu	iracy	for Each Model
Day	3:	0.90986321181811
Day	10:	0.6101871038702973
Day	20:	0.8488098638194955
Day	29:	0.9863515656808114

	Day 3	Day 29
Precision	0.87	0.99
Recall	0.91	0.99

Logistic Regression

- Best logistic regression models: **day 20 and day 29**
- Select **best five features** for each model
- Calculate **precision and recall** based on confusion matrix

	Day 20	Day 29		
Precision	0.816	0.984		
Recall	1	1		

Log loss: 0.4777902940221649

Accuracy: 0.8158190579785004

	Predicted: Arrival 20	Predicted: Not Arrival 20
Actual: Arrival 20	134252	0
Actual: Not Arrival 20	30309	0

Log loss:	0.08359	528337	434832	
Accuracy:	0.98368	386191	13885	
	Predicted	: Arrival 29	Predicted: Not	Arrival 29
Actual: Arrival	29	161876		0
Actual: Not Arrival	29	2685		0

Gradient Boosting Machine

- Best GBM days: day 3 and 29
- Testing on **learning rates** 0.05 to 1
- Ranked based on learning rate, confusion matrix **precision** and **recall**
- No difference in learning rate hyperparameter

Learning	rate:	1	
Accuracy	score	(training): 0	.915
Accuracy	score	(validation):	0.914

Day 3

	Day 3	Day 29
Precision	0.86	0.98
Recall	0.91	0.98

Learning rate: 1 Accuracy score (training): 0.983 Accuracy score (validation): 0.984

Day 29

XGBoost

- Best XGBoost models: day 3 and day 29
- Calculate **Mean Squared Error** and **accuracy** for each model
- Default parameters from scikit learn

Mean Sq	uared	Error	for	Each	Model
Day 3:	0.078	287210	3394	10221	
Day 10:	0.24	881981	1748	32657	7
Day 20:	0.14	978061	1152	228625	5
Day 29:	0.01	599283	3291	171489	97

	Day 3	Day 29	
Precision	0.92	0.98	
Recall	0.91	0.98	

Accu	iracy	y for	Each	Model	
Day	3:	0.914	15342	142354507	
Day	10:	0.52	52094	4967823482	
Day	20:	0.81	62322	2786079326	
Day	29:	0.98	36960	015459313	

Model Comparison

Model Name	Description	Pros	Cons	
Random Forest	Output of multiple decision trees to reach a single result	 High accuracy for days 3, 29 Highest precision and recall for day 29 	Low accuracy for day 10Computationally inefficient	
Logistic Regression	Binomial estimation of probability of customer arriving to website	 High accuracy, precision, and recall for days 20, 29 Easy to implement 	• Low accuracy and low precision/recall for day 10	
Gradient Boosting Machine	Using gradients in loss function, measure indicating how good model fitting data	 Computationally efficient High precision, recall, and accuracy for day 29 	 Lowest accuracy of all the models for day 10 Confusion matrix unrepresentative of data 	
XGBoost	Scalable extreme gradient boosting decision tree	 High accuracy, high precision and recall, and low MSE for days 3, 29 	 Low accuracy for day 10 High MSE for days 10 and 20 Computationally inefficient 	

Insights and Key Findings

- Ranked based on precision and recall
 - 1. Random forest
 - 2. XGBoost
 - 3. GBM
 - 4. Logistic Regression
- Best Model for Each Day
 - Day 3: XGBoost
 - Day 10: Random Forest
 - Day 20: Logistic Regression
 - Day 29: Random Forest

- Ranked based on accuracy
 - 1. Random Forest
 - 2. XGBoost and GBM
 - 3. Logistic Regression

- Our Selected Model
 - Random Forest
 - Highest accuracy for day 10
 - Best evaluation metrics

What We Learned

- Utilizing GitHub, Geeks for Geeks, Towards Data Science, and Sci-kit Learn **Documentation**
- Project management: Slack, Trello
- Gradient Boosting and XGBoost Classification
- Hands-on experience with **ML pipeline**

Potential Next Steps

- Test for **multiple days** apart from four models
- Classification for **days 1, 2, and 30**
- Feature engineering dataset inclusive of all **900,000 unique accounts**
- **Docker image deployment** and Medium article
- **GitHub** command practice

Questions?